230 research outputs found

    Effective macroscopic dynamics of stochastic partial differential equations in perforated domains

    Full text link
    An effective macroscopic model for a stochastic microscopic system is derived. The original microscopic system is modeled by a stochastic partial differential equation defined on a domain perforated with small holes or heterogeneities. The homogenized effective model is still a stochastic partial differential equation but defined on a unified domain without holes. The solutions of the microscopic model is shown to converge to those of the effective macroscopic model in probability distribution, as the size of holes diminishes to zero. Moreover, the long time effectivity of the macroscopic system in the sense of \emph{convergence in probability distribution}, and the effectivity of the macroscopic system in the sense of \emph{convergence in energy} are also proved

    Realizability of metamaterials with prescribed electric permittivity and magnetic permeability tensors

    Full text link
    We show that any pair of real symmetric tensors \BGve and \BGm can be realized as the effective electric permittivity and effective magnetic permeability of a metamaterial at a given fixed frequency. The construction starts with two extremely low loss metamaterials, with arbitrarily small microstructure, whose existence is ensured by the work of Bouchitt{\'e} and Bourel and Bouchitt\'e and Schweizer, one having at the given frequency a permittivity tensor with exactly one negative eigenvalue, and a positive permeability tensor, and the other having a positive permittivity tensor, and a permeability tensor having exactly one negative eigenvalue. To achieve the desired effective properties these materials are laminated together in a hierarchical multiple rank laminate structure, with widely separated length scales, and varying directions of lamination, but with the largest length scale still much shorter than the wavelengths and attenuation lengths in the macroscopic effective medium.Comment: 12 pages, no figure

    The Effect of Tumbling, Sodium Chloride and Polyphosphates on the Microstructure and Appearance of Whole-Muscle Processed Meats

    Get PDF
    The properties of a whole-muscle processed meat were determined. The complex action of socium chloride, polyphosphates and mechanical agitation caused extraction of myofibrillar protein, swelling of fibers and loss of cross-strations. A new functional ability was found for the extracted proteins to form a fine cover or membrane on the surface of the whole muscle during cooking. These changes produced a product with improved cooking yield and color appearance

    Non-local homogenised limits for composite media with highly anisotropic periodic fibres

    Get PDF
    We consider a homogenization problem for highly anisotropic conducting fibres embedded into an isotropic matrix. For a ‘double porosity’-type scaling in the expression of high contrast between the conductivity along the fibres and the conductivities in the transverse directions, we prove the homogenization theorem and derive two-scale homogenized equations using a version of the method of two-scale convergence, supplemented in the case when the spectral parameter λ = 0 by a newly derived variant of high-contrast Poincaré-type inequality. Further elimination of the 'rapid' component from the two-scale limit equations results in a non-local (convolution-type integro-differential) equation for the slowly varying part in the matrix, with the non-local kernel explicitly related to the Green function on the fibre. The regularity of the solution to the non-local homogenized equation is proved

    Tunable Double Negative Band Structure from Non-Magnetic Coated Rods

    Full text link
    A system of periodic poly-disperse coated nano-rods is considered. Both the coated nano-rods and host material are non-magnetic. The exterior nano-coating has a frequency dependent dielectric constant and the rod has a high dielectric constant. A negative effective magnetic permeability is generated near the Mie resonances of the rods while the coating generates a negative permittivity through a field resonance controlled by the plasma frequency of the coating and the geometry of the crystal. The explicit band structure for the system is calculated in the sub-wavelength limit. Tunable pass bands exhibiting negative group velocity are generated and correspond to simultaneously negative effective dielectric permittivity and magnetic permeability. These can be explicitly controlled by adjusting the distance between rods, the coating thickness, and rod diameters

    Dynamo effect in parity-invariant flow with large and moderate separation of scales

    Full text link
    It is shown that non-helical (more precisely, parity-invariant) flows capable of sustaining a large-scale dynamo by the negative magnetic eddy diffusivity effect are quite common. This conclusion is based on numerical examination of a large number of randomly selected flows. Few outliers with strongly negative eddy diffusivities are also found, and they are interpreted in terms of the closeness of the control parameter to a critical value for generation of a small-scale magnetic field. Furthermore, it is shown that, for parity-invariant flows, a moderate separation of scales between the basic flow and the magnetic field often significantly reduces the critical magnetic Reynolds number for the onset of dynamo action.Comment: 44 pages,11 figures, significantly revised versio

    Finite element approximation of the p()p(\cdot)-Laplacian

    Full text link
    We study a~priori estimates for the Dirichlet problem of the p()p(\cdot)-Laplacian, div(vp()2v)=f.-\mathrm{div}(|\nabla v|^{p(\cdot)-2} \nabla v) = f. We show that the gradients of the finite element approximation with zero boundary data converges with rate O(hα)O(h^\alpha) if the exponent pp is α\alpha-H\"{o}lder continuous. The error of the gradients is measured in the so-called quasi-norm, i.e. we measure the L2L^2-error of vp22v|\nabla v|^{\frac{p-2}{2}} \nabla v

    Upscaled phase-field models for interfacial dynamics in strongly heterogeneous domains

    Full text link
    We derive a new effective macroscopic Cahn-Hilliard equation whose homogeneous free energy is represented by 4-th order polynomials, which form the frequently applied double-well potential. This upscaling is done for perforated/strongly het- erogeneous domains. To the best knowledge of the authors, this seems to be the first attempt of upscaling the Cahn-Hilliard equation in such domains. The new homog- enized equation should have a broad range of applicability due to the well-known versatility of phase-field models. The additionally introduced feature of systemati- cally and reliably accounting for confined geometries by homogenization allows for new modeling and numerical perspectives in both, science and engineering. Our results are applied to wetting dynamics in porous media and to a single channel with strongly heterogeneous walls

    Inverse spectral problems for Sturm-Liouville operators with singular potentials

    Get PDF
    The inverse spectral problem is solved for the class of Sturm-Liouville operators with singular real-valued potentials from the space W21(0,1)W^{-1}_2(0,1). The potential is recovered via the eigenvalues and the corresponding norming constants. The reconstruction algorithm is presented and its stability proved. Also, the set of all possible spectral data is explicitly described and the isospectral sets are characterized.Comment: Submitted to Inverse Problem
    corecore